题目内容


已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是(     )

A.含30°角的直角三角形   B.顶角是30°的等腰三角形

C.等边三角形     D.等腰直角三角形


C【考点】轴对称的性质.

【专题】证明题.

【分析】根据轴对称的性质,结合等边三角形的判定求解.

【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2

∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,

∴故△P1OP2是等边三角形.

故选C.

【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网