题目内容

11.解方程组:
(1)$\left\{{\begin{array}{l}{x=y+1}\\{2x+y=2}\end{array}}\right.$
(2)$\left\{{\begin{array}{l}{5x-2y=4}\\{2x-3y=-5}\end{array}}\right.$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x=y+1①}\\{2x+y=2②}\end{array}\right.$,
①代入②得:2y+2+y=2,
解得:y=0,
把y=0代入①得:x=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{5x-2y=4①}\\{2x-3y=-5②}\end{array}\right.$,
①×3-②×2得:11x=22,即x=2,
把x=2代入①得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网