题目内容
3.| A. | 20° | B. | 15° | C. | 35° | D. | 70° |
分析 首先连接BD,由AB是⊙O的直径,可求得∠ADB=90°,又由∠BAD=70°,求得∠B的度数,继而求得答案.
解答
解:连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠BAD=70°,
∴∠B=90°-∠BAD=20°,
∴∠ACD=∠B=20°.
故选A.
点评 此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.
练习册系列答案
相关题目
13.
如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6$\sqrt{2}$,∠C=45°,tan∠ABC=3,则BD等于( )
| A. | 2 | B. | 3 | C. | 3$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
14.
△ABC在正方形网格中的位置如图所示,点A,B,C,P均在格点上,则点P是△ABC的( )
| A. | 三条垂直平分线的交点 | B. | 三条内角角平分线的交点 | ||
| C. | 重心 | D. | 无法确定 |
18.方程1-3x=0的解是( )
| A. | x=-$\frac{1}{3}$ | B. | x=$\frac{1}{3}$ | C. | x=-3 | D. | x=3 |
8.下列说法正确的是( )
| A. | 任何有理数有倒数 | B. | -a一定是负数 | ||
| C. | 立方等于它本身的数有±1 | D. | 绝对值最小的数是0 |
6.
如图,在△ABC中,DE∥BC交AB于点D,交AC于点E.若AB=4,AC=3,AD=3,则AE的长为( )
| A. | $\frac{4}{9}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $\frac{9}{4}$ |