题目内容
如图,把一张长方形纸条ABCD沿AF折叠,已知∠ADB=15°,若AE∥BD,则∠EFC=________度.
105
分析:由题意AE∥BD,根据内错角相等,可知∠AEF=∠HGD=90°,从而求出∠EFC的度数.
解答:
解:设EF与BD相交于G点,与AD相交于H点,
∵AE∥BD,
∴∠AEF=∠HGD=90°,
则∠FHD=75°,
故结果为∠EFC=105°.
故答案为:105°.
点评:此题考查折叠图形的性质及利用平行线的性质来解题,比较简单.
分析:由题意AE∥BD,根据内错角相等,可知∠AEF=∠HGD=90°,从而求出∠EFC的度数.
解答:
∵AE∥BD,
∴∠AEF=∠HGD=90°,
则∠FHD=75°,
故结果为∠EFC=105°.
故答案为:105°.
点评:此题考查折叠图形的性质及利用平行线的性质来解题,比较简单.
练习册系列答案
相关题目