题目内容
如图,△ABC内接于⊙O,AE是⊙O的直径,AE与BC交于点D,且D是OE的中点,则tan∠ABC•tan∠ACB=______.

连接BE、CE,则∠ABE=∠ACE=90°.
∵∠EAC=∠CBE,∠BED=∠ACB,
∴△ADC∽△BDE,
∴
=
.①
同理可由△ADB∽△CDE,得
=
. ②
①×②,得
=
=3.
Rt△AEC中,tan∠AEC=
.
同理得tan∠AEB=
.
故tan∠AEC•tan∠AEB=
=3.
∵∠EAC=∠CBE,∠BED=∠ACB,
∴tan∠ABC•tan∠ACB=3.

∵∠EAC=∠CBE,∠BED=∠ACB,
∴△ADC∽△BDE,
∴
| AC |
| BE |
| AD |
| BD |
同理可由△ADB∽△CDE,得
| AB |
| EC |
| BD |
| DE |
①×②,得
| AB•AC |
| BE•EC |
| AD |
| DE |
Rt△AEC中,tan∠AEC=
| AC |
| EC |
同理得tan∠AEB=
| AB |
| BE |
故tan∠AEC•tan∠AEB=
| AB•AC |
| BE•EC |
∵∠EAC=∠CBE,∠BED=∠ACB,
∴tan∠ABC•tan∠ACB=3.
练习册系列答案
相关题目