题目内容
19.若$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$是方程组$\left\{\begin{array}{l}{mx-ny=1}\\{nx+my=8}\end{array}\right.$的解,则m、n的值是$\left\{\begin{array}{l}{m=2}\\{n=3}\end{array}\right.$.分析 先把$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$代入方程,可得$\left\{\begin{array}{l}{2m-n=1}\\{2n+m=8}\end{array}\right.$,解可求m、n的值,最后把m、n的值代入所求代数式计算即可.
解答 解:先把$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$代入方程,可得$\left\{\begin{array}{l}{2m-n=1}\\{2n+m=8}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{m=2}\\{n=3}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{m=2}\\{n=3}\end{array}\right.$.
点评 本题考查了二元一次方程的解,解题的关键是掌握加减消元的思想.
练习册系列答案
相关题目