题目内容

12.函数y=ax2+bx+c的三项系数分别为a、b、c,则定义[a,b,c]为该函数的“特征数”.如:函数y=x2+3x-2的“特征数”是[1,3,-2],函数y=-x+4的“特征数”是[0,-1,4].如果将“特征数”是[2,0,4]的函数图象向左平移3个单位,得到一个新的函数图象,那么这个新图象相应的函数表达式是y=2(x+3)2+4.

分析 先写出抛物线的解析式,然后求出顶点坐标,再根据向左平移横坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出函数表达式即可.

解答 解:∵“特征数”是[2,0,4],
∴函数解析式为y=2x2+4,
∴函数的顶点坐标为(0,4),
∵函数图象向左平移3个单位,
∴得到的新的函数图象的顶点坐标为(3,4),
∴函数表达式为y=2(x+3)2+4.
故答案为:y=2(x+3)2+4.

点评 本题考查了二次函数图象与几何变换,读懂题目信息理解函数的“特征数”是解题的关键,此类题目,利用顶点的变化确定函数解析式的更简便.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网