题目内容

13.已知二次函数y=ax2+bx+1,若当x=1时,y=0;当x=-1时,y=4,则a、b的值分别为(  )
A.a=1,b=2B.a=1,b=-2C.a=-1,b=2D.a=-1,b=-2

分析 把两组对应值分别代入y=ax2+bx+1得到关于a、b的方程组,然后解方程组即可得到a和b的值.

解答 解:根据题意得$\left\{\begin{array}{l}{a+b+1=0}\\{a-b+1=4}\end{array}\right.$,
解得a=1,b=-2.
故选B.

点评 本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网