题目内容
函数y=x+1与x轴交点为
- A.(0,-1)
- B.(1,0)
- C.(0,1)
- D.(-1,0)
D
分析:由于x轴上点的坐标为(x,0),代入解析式即可求得x的值,从而得到函数与x轴的交点坐标.
解答:设函数y=x+1与x轴交点为(x,0),
将(x,0)其代入y=x+1得,
x+1=0,
解得x=-1.
所以,函数y=x+1与x轴交点为(-1,0).
故选D.
点评:此题考查了一次函数图象上点的坐标特征,解答此题的关键是明确x轴上的点的纵坐标为0.
分析:由于x轴上点的坐标为(x,0),代入解析式即可求得x的值,从而得到函数与x轴的交点坐标.
解答:设函数y=x+1与x轴交点为(x,0),
将(x,0)其代入y=x+1得,
x+1=0,
解得x=-1.
所以,函数y=x+1与x轴交点为(-1,0).
故选D.
点评:此题考查了一次函数图象上点的坐标特征,解答此题的关键是明确x轴上的点的纵坐标为0.
练习册系列答案
相关题目