题目内容

1.如图,将两张长为6cm,宽为3cm的矩形纸条交叉,使重叠部分是一个菱形,那么菱形周长的最大值是15.

分析 根据重叠部分构成的菱形的周长最大,边长也最大,此时设菱形的边长为x,然后表示出BC,再利用勾股定理列式进行计算即可求出x的值,然后根据菱形的周长公式列式进行计算即可得解.

解答 解:如图所示时,重叠部分构成的菱形的周长最大,
设AB=x,
∵矩形纸条的长为6cm,宽为3cm,
∴BC=(6-x)cm,
在Rt△ABC中,AB2=AC2+BC2
即x2=32+(6-x)2
整理得,12x=45,
解得x=$\frac{15}{4}$,
故菱形周长的最大值4×$\frac{15}{4}$=15cm.
故答案为:15cm.

点评 本题考查了菱形的性质,利用菱形的面积确定出菱形的边长最大时的情况是解题的关键,还利用了勾股定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网