题目内容
在?ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE=________.
5
分析:先画出图形,根据平行线的性质,结合点E是边CD的中点,可判断OE是△DBC的中位线,继而可得出OE的长度.
解答:
∵四边形ABCD是平行四变形,
∴点O是BD中点,
∵点E是边CD的中点,
∴OE是△DBC的中位线,
∴OE=
BC=5.
故答案为:5.
点评:本题考查了平行四边形的性质及中位线定理的知识,解答本题的关键是根据平行四边形的性质判断出点O是BD中点,得出OE是△DBC的中位线.
分析:先画出图形,根据平行线的性质,结合点E是边CD的中点,可判断OE是△DBC的中位线,继而可得出OE的长度.
解答:
∵四边形ABCD是平行四变形,
∴点O是BD中点,
∵点E是边CD的中点,
∴OE是△DBC的中位线,
∴OE=
故答案为:5.
点评:本题考查了平行四边形的性质及中位线定理的知识,解答本题的关键是根据平行四边形的性质判断出点O是BD中点,得出OE是△DBC的中位线.
练习册系列答案
相关题目