题目内容
如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若
=KD·GE,试判断AC与EF的位置关系,并说明理由;
(3) 在(2)的条件下,若sinE=
,AK=
,求FG的长.
![]()
考点:切线的性质;勾股定理;垂径定理;圆周角定理;相似三角形的判定与性质;解直角三角形。
解答:解:(1)如答图1,连接OG.x kb 1.com
![]()
∵EG为切线,∴∠KGE+∠OGA=90°,
∵CD⊥AB,∴∠AKH+∠OAG=90°,
又OA=OG,∴∠OGA=∠OAG,
∴∠KGE=∠AKH=∠GKE,
∴KE=GE.
(2)AC∥EF,理由为:
连接GD,如答图2所示.
![]()
∵KG2=KD•GE,即
=
,
∴
=
,又∠KGE=∠GKE,
∴△GKD∽△EGK,
∴∠E=∠AGD,又∠C=∠AGD,
∴∠E=∠C,
∴AC∥EF;
(3)连接OG,OC,如答图3所示.
![]()
sinE=sin∠ACH=
,设AH=3t,则AC=5t,CH=4t,
∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t.
在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,
即(3t)2+t2=(
)2,解得t=
.
设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,
由勾股定理得:OH2+CH2=OC2,
即(r﹣3t)2+(4t)2=r2,解得r=
t=
.
∵EF为切线,∴△OGF为直角三角形,
在Rt△OGF中,OG=r=
,tan∠OFG=tan∠CAH=
=
,
∴FG=
=
=
.
练习册系列答案
相关题目