题目内容
如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB 的延长线交于点P,则∠P等于( )
A. 15° B. 20° C. 25° D. 30°
下列方程为一元一次方程的是( )
A. y+3= 0 B. x+2y=3 C. x2=2x D.
如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点E,则△DEF的面积为______.
已知二次函数y=ax2+bx+c(c≠4a),其图象L经过点A(-2,0).
(1)求证:b2-4ac>0;
(2)若点B(-,b+3)在图象L上,求b的值;
(3)在(2)的条件下,若图象L的对称轴为直线x=3,且经过点C(6,-8),点D(0,n)在y轴负半轴上,直线BD与OC相交于点E,当△ODE为等腰三角形时,求n的值.
设I是△ABC的内心,O是△ABC的外心,∠A=80°,则∠BIC=________,∠BOC=________.
把二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列变形正确的是( )
A. y=(x+1)2+3 B. y=(x﹣2)2+3 C. y=(x﹣1)2+5 D. y=(x﹣1)2+3
某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500kg,销售价每涨价1元,月销售量就减少10kg.
(1)写出月销售利润y(单位:元)与售价x(单位:元/千克)之间的函数解析式.
(2)商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?
(3)当售价定位多少元时会获得最大利润?求出最大利润.
如两个不相等的正数a、b满足a+b=2,ab=t-1,设S=,则S关于t的函数图象是( )
A. 射线(不含端点) B. 线段(不含端点) C. 直线 D. 抛物线的一部分
如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD
面上的概率为0.75;若存在,指出其中的一种平移方式;若不存在,请说明理由.