题目内容
把二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列变形正确的是( )
A. y=(x+1)2+3 B. y=(x﹣2)2+3 C. y=(x﹣1)2+5 D. y=(x﹣1)2+3
已知:如图1,直线与x轴、y轴分别交于点A、C两点,点B的横坐标为2.
(1)求A、C两点的坐标和抛物线的函数关系式;
(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且S△PCD=2S△PAD ,求点P的坐标;
(3)如图2,另有一条直线y=-x与直线AC交于点M,N为线段OA上一点,∠AMN=∠AOM.点Q为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q的坐标.
当x=_____时,分式 值为零.
已知P(﹣3,m)和 Q(1,m)是抛物线y=x2+bx﹣3上的两点.
(1)求b的值;
(2)将抛物线y=x2+bx﹣3的图象向上平移k(是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值;
(3)将抛物线y=x2+bx﹣3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围.
如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB 的延长线交于点P,则∠P等于( )
A. 15° B. 20° C. 25° D. 30°
已知抛物线y=-x2+2mx-m2+的顶点为P.
(1)求证:不论m取何值,点P始终在同一个反比例函数图象上?
(2)若抛物线与x轴交于A、B两点,当m为何值时,线段AB长等于8?
(3)该抛物线上是否存在一点Q,使得△OPQ是以点P为顶点的等腰直角三角形?若不存在,请说明理由;若存在,请求出m的值.
如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.
(1)求证:△AEC∽△DEB;
(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.
如图,抛物线的函数表达式是( )
A. y=-x2+x+2 B. y=-x2-x+2
C. y=x2+x+2 D. y=x2-x+2
将下图分成四个全等的图形,而且每一份图形中恰好有“巧分图形”四个字.