题目内容

等腰△ABC,AB=AC,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.

(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;

(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.

①       探究1:△BPE与△CFP还相似吗?(只需写出结论)

②       探究2:连结EF,△BPE与△PFE是否相似?请说明理由;

 

(1)证明过程见解析,(2)①相似   ②相似,理由见解析

解析:(1) 证明:∵在△ABC中,

∠BAC=120°,AB=AC,

∴∠B=∠C=30°.

∵∠B+∠BPE+∠BEP=180°,

∴∠BPE+∠BEP=150°,

∴∠EPF=30°,

又∵∠BPE+∠EPF+∠CPF=180°,

∴∠BPE+∠CPF=150°,

∴∠BEP=∠CPF,

∴△BPE∽△CFP(两角对应相等的两个三角形相似).

(2)  ①相似   ②相似

解:①△BPE∽△CFP;②△BPE与△PFE相似.

下面证明结论:

同(1),可证△BPE∽△CFP,得 CP:BE=PF:PE,而CP=BP,因此 BP:BE=PF:PE.

又因为∠EBP=∠EPF,所以△BPE∽△PFE(两边对应成比例且夹角相等的两个三角形相似).

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网