题目内容
分解因式:x3y﹣xy= .
α,β都是钝角,甲、乙、丙、丁计算(α+β)的结果依次为50°,26°,72°,90°,其中有正确的结果,则计算正确的是( )
A. 甲 B. 乙 C. 丙 D. 丁
先化简再求值: ,其中x=﹣3,y=﹣2。
如图所示,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于 ( )
A. 30° B. 45° C. 50° D. 60°
如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,E为AC延长线上一点,ED⊥AB于F.
(1)判断△DCE的形状;
(2)设⊙O的半径为1,且OF=,求证:△DCE≌△OCB.
在函数的图象上有三点A(﹣2,y1)、B(﹣1,y2)、C(2,y3),则( )
A. y1>y2>y3 B. y2>y1>y3 C. y1>y3>y2 D. y3>y2>y1
如图,已知直线AB∥CD,∠C=125°,那么∠1的大小为( )
A. 125° B. 65° C. 55° D. 45°
如图,顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得到四边形A3B3C3D3,…,已知AB=6, BC=8,按此方法得到的四边形A5B5C5D5的周长为(______).
我们知道,任意一个正整数n都可以进行这样的分【解析】n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.
例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.
(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.
求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;
(3)在(2)所得“吉祥数”中,求F(t)的最大值.