题目内容
在函数的图象上有三点A(﹣2,y1)、B(﹣1,y2)、C(2,y3),则( )
A. y1>y2>y3 B. y2>y1>y3 C. y1>y3>y2 D. y3>y2>y1
下列各式不正确的是( )
A. 18000″<360′ B. 2°30′>2.4° C. 36000″<8° D. 1°10′20″>4219″
若,则y=________;
(10分)如图,在平面直角坐标系中,反比例函数的图象和矩形ABCD在第二象限,AD平行于x轴,且AB=2,AD=4,点C的坐标为(﹣2,4).
(1)直接写出A、B、D三点的坐标;
(2)若将矩形只向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,求反比例函数的解析式和此时直线AC的解析式y=mx+n.并直接写出满足的x取值范围.
分解因式:x3y﹣xy= .
如图,点A、B、C、D都在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠ADC的度数为( )
A. 30° B. 45° C. 60° D. 90°
下面我们做一次折叠活动:
第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;
第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;
第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.
根据以上的操作过程,完成下列问题:
(1)求CD的长.
(2)请判断四边形ABQD的形状,并说明你的理由.
已知?ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF≤S△AEF;④∠BFE=3∠CEF.中一定成立的是( )
A. ①②④ B. ①③ C. ②③④ D. ①②③④
已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat point),已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点,若P就是△ABC的费马点,若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF= .