题目内容


已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;

(1)求y关于x的函数解析式,并写出它的定义域;

(2)当AP=4时,求∠EBP的正切值;

(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.


              解:(1)∵四边形ABCD是矩形,

∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,

∴∠APB=∠PBC.

∵∠ABE=∠CBP,

∴∠ABM=∠APB.

又∵∠A=∠A,

∴△ABM∽△APB,

=

=

∴y=x﹣

∵P是边AD上的一动点,

∴0≤x≤5.

∵y>0,

∴x﹣>0,

∴x>2,

∴函数的定义域为2<x≤5;

(2)过点M作MH⊥BP于H,如图.

∵AP=x=4,∴y=x﹣=3,

∴MP=3,AM=1,

∴BM==,BP==2

∵S△BMP=MP•AB=BP•MH,

∴MH==

∴BH==

∴tan∠EBP==

(3)①若EB=EC,

则有∠EBC=∠ECB.

∵AD∥BC,

∴∠AMB=∠EBC,∠DPC=∠ECB,

∴∠AMB=∠DPC.

在△AMB和△DPC中,

∴△AMB≌△DPC,

∴AM=DP,

∴x﹣y=5﹣x,

∴y=2x﹣5,

∴x﹣=2x﹣5,

解得:x1=1,x2=4.

∵2<x≤5,

∴AP=x=4;

②若CE=CB,

则∠EBC=∠E.

∵AD∥BC,

∴∠EMP=∠EBC=∠E,

∴PE=PM=y,

∴PC=EC﹣EP=5﹣y,

∴在Rt△DPC中,

(5﹣y)2﹣(5﹣x)2=22

∴(10﹣x﹣y)(x﹣y)=4,

∴(10﹣x﹣x+)(x﹣x+)=4,

整理得:3x2﹣10x﹣4=0,

解得:x3=,x4=(舍负).

∴AP=x=

终上所述:AP的值为4或


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网