题目内容

已知抛物线y=ax2+bx+c与x轴交点的横坐标分别为-1和2,且经过点(3,8),求这个抛物线的解析式.
考点:待定系数法求二次函数解析式
专题:
分析:先设抛物线解析式为y=a(x+1)(x-2),再将点(3,8)代入,求出a的值,从而得到抛物线的解析式.
解答:解:设抛物线解析式为y=a(x+1)(x-2),
将点(3,8)代入得,8=4a,
解得a=2,
故此抛物线的解析式为:y=2(x+1)(x-2),即y=2x2-2x-4.
点评:本题考查用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网