题目内容
2
2
cm.分析:首先根据全等三角形的判定得出BDE≌△ADC,进而得出DE=CD,即可得出答案.
解答:解:∵BF⊥AC,
∴∠C+∠FBC=90°,
∵AD⊥BC,
∴∠C+∠DAC=90°,
∴∠DAC=∠FBC,
在△BDE和△ADC中
,
∴△BDE≌△ADC(ASA),
∴CD=DE=2cm,
∵BC=6cm,DC=2cm,
∴BD=AD=4cm,
∴AE=4-2=2(cm).
故答案为:2.
∴∠C+∠FBC=90°,
∵AD⊥BC,
∴∠C+∠DAC=90°,
∴∠DAC=∠FBC,
在△BDE和△ADC中
|
∴△BDE≌△ADC(ASA),
∴CD=DE=2cm,
∵BC=6cm,DC=2cm,
∴BD=AD=4cm,
∴AE=4-2=2(cm).
故答案为:2.
点评:此题主要考查了全等三角形的判定与性质,根据题意得出∠DAC=∠FBC是解题关键.
练习册系列答案
相关题目