题目内容
【题目】如图,AB为⊙O的直径,D为
的中点,连接OD交弦AC于点F,过点D作DE∥AC,交BA的延长线于点E. ![]()
(1)求证:DE是⊙O的切线;
(2)连接CD,若OA=AE=4,求四边形ACDE的面积.
【答案】
(1)证明:∵D为
的中点,
∴OD⊥AC,
∵AC∥DE,
∴OD⊥DE,
∴DE是⊙O的切线
(2)解:连接DC,
![]()
∵D为
的中点,
∴OD⊥AC,AF=CF,
∵AC∥DE,且OA=AE,
∴F为OD的中点,即OF=FD,
在△AFO和△CFD中,
![]()
∴△AFO≌△CFD(SAS),
∴S△AFO=S△CFD,
∴S四边形ACDE=S△ODE
在Rt△ODE中,OD=OA=AE=4,
∴OE=8,
∴DE=
=4
,
∴S四边形ACDE=S△ODE=
×OD×DE=
×4×4
=8
.
【解析】(1)欲证明DE是⊙O的切线,只要证明AC⊥OD,ED⊥OD即可.(2)由△AFO≌△CFD(SAS),推出S△AFO=S△CFD , 推出S四边形ACDE=S△ODE , 求出△ODE的面积即可.
练习册系列答案
相关题目