题目内容

3.二次函数y=x2-2x-3的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,顶点为D.
(1)画出该二次函数的图象;
(2)求四边形OCDB的面积.

分析 (1)画出图形;
(2)分别求出C和D的坐标,利用梯形与三角形面积的和求四边形OCDB的面积.

解答 解:(1)如图所示,
(2)y=x2-2x-3=(x-1)2-4,
∴C(0,-3),D(1,-4),
∴S四边形OCDB=S△DEB+S梯形OCDE
=$\frac{1}{2}$DE•BE+$\frac{1}{2}$(OC+DE)×OE,
=$\frac{1}{2}$×4×2+$\frac{1}{2}$×(3+4)×1,
=4+3.5,
=7.5.

点评 本题考查了二次函数的图象与性质,根据解析式及对称性质会画函数的图象,求图形面积时,可以直接根据图形面积公式求解,也可以利用面积和或差求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网