题目内容


已知某厂现有A种金属70吨,B种金属52吨,现计划用这两种金属生产M、N两种型号的合金产品共80000套,已知做一套M型号的合金产品需要A种金属0.6kg,B种金属0.9kg,可获利润45元;做一套N型号的合金产品需要A种金属1.1kg,B种金属0.4kg,可获利润50元.若设生产N种型号的合金产品大数为x,用这批金属生产这两种型号的合金产品所获总利润为y元.

(1)求y与x的函数关系式,并求出自变量x的取值范围;

(2)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获利润最大?最大利润是多少?


解:(1)y=50x+45(8000﹣x)=5x+360000,

由题意得,

解不等式①得,x≤44000,

解不等式②得,x≥40000,

所以,不等式组的解集是40000≤x≤44000,

∴y与x的函数关系式是y=5x+360000(40000≤x≤44000);

 

(2)∵k=5>0,

∴y随x的增大而增大,

∴当x=44000时,y最大=580000,

即生产N型号的时装44000套时,该厂所获利润最大,最大利润是580000元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网