题目内容
【题目】如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.
![]()
(1)求该抛物线所表示的二次函数的表达式;
(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.
【答案】(1)y=-
+
x+2;(2)存在,Q(3,2)或Q(-1,0);(3)两个和谐点,A1的横坐标是1,
.
【解析】
(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;
(2)分两种情况分别讨论,当∠QBM=90°或∠MQB=90°,即可求得Q点的坐标.
(3)(3)两个和谐点;AO=1,OC=2,设A1(x,y),则C1(x+2,y-1),O1(x,y-1),
①当A1、C1在抛物线上时,A1的横坐标是1;
当O1、C1在抛物线上时,A1的横坐标是2;
解:(1)设抛物线解析式为y=ax2+bx+c,
将点A(-1,0),B(4,0),C(0,2)代入解析式,
∴
,
∴
,
∴y=-
+
x+2;
(2)∵点C与点D关于x轴对称,
∴D(0,-2).
设直线BD的解析式为y=kx-2.
∵将(4,0)代入得:4k-2=0,
∴k=
.
∴直线BD的解析式为y=
x-2.
当P点与A点重合时,△BQM是直角三角形,此时Q(-1,0);
![]()
当BQ⊥BD时,△BQM是直角三角形,
则直线BQ的直线解析式为y=-2x+8,
∴-2x+8=-
+
x+2,可求x=3或x=4(舍)
∴x=3;
∴Q(3,2)或Q(-1,0);
(3)两个和谐点;
AO=1,OC=2,
设A1(x,y),则C1(x+2,y-1),O1(x,y-1),
①当A1、C1在抛物线上时,
∴
,
∴
,
∴A1的横坐标是1;
当O1、C1在抛物线上时,
,
∴
,
∴A1的横坐标是
;
![]()
【题目】某社区准备五一组织社区内老年人去到县参加采摘节,现有甲、乙两家旅行社表示对老年人优惠,甲旅行社的优惠方式为:在原来每人100元的基础上,每人按照原价的60%收取费用;乙旅行社的优惠方式为:在收取一个600元固定团费的基础上,再额外收取每人40元.设参加采摘节的老年人有x人,甲、乙两家旅行社实际收费为
元、
元.
(Ⅰ)根据题意,填写下表:
老年人数量(人) | 5 | 10 | 20 | |
甲旅行社收费(元) | 300 | |||
乙旅行社收费)(元) | 800 |
(Ⅱ)求
、
关于x的函数关系式(不用写出自变量的取值范围)?
(Ⅲ)如果
,选择哪家旅行社合算?