题目内容
某旅游商品经销店欲购进A、B两种纪念品,若用380元可购进A种纪念品7件、B种纪念品8件;也可以用380元购进A种纪念品10件、B种纪念品6件.
(1)A、B两种纪念品的进价分别为多少?
(2)若甲产品的售价是25元/件,乙产品的售价是37元/件,该商店准备用不超过900元购进甲、乙两种产品共40件,且这两种产品全部售出总获利不低于216元,问:应该怎样进货,才能使总获利最大?最大利润是多少?
(1)A、B两种纪念品的进价分别为多少?
(2)若甲产品的售价是25元/件,乙产品的售价是37元/件,该商店准备用不超过900元购进甲、乙两种产品共40件,且这两种产品全部售出总获利不低于216元,问:应该怎样进货,才能使总获利最大?最大利润是多少?
考点:一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用
专题:
分析:(1)设A和B的进价分别为x和y,件数×进价=付款,可得到一个二元一次方程组,求解即可.
(2)获利=利润×件数,设购买A商品a件,则购买B商品(40-a)件,由题意可得到两个不等式,解不等式组即可.
(2)获利=利润×件数,设购买A商品a件,则购买B商品(40-a)件,由题意可得到两个不等式,解不等式组即可.
解答:解:(1)设A、B两种纪念品的进价分别为x元、y元.由题意,
得
,
解得
.
答:A、B两种纪念品的进价分别为20元、30元.
(2)设商店准备购进A种纪念品a件,则购进B种纪念品(40-a)件.
由题意,得
,
解得:30≤a≤32.
设总利润为w,
∵总获利w=5a+7(40-a)=-2a+280是a的一次函数,且w随a的增大而减小,
∴当a=30时,w最大,最大值w=-2×30+280=220.
∴40-a=10.
∴当购进A种纪念品30件,B种纪念品10件时,总获利不低于216元,且获得利润最大,最大值是220元.
得
|
解得
|
答:A、B两种纪念品的进价分别为20元、30元.
(2)设商店准备购进A种纪念品a件,则购进B种纪念品(40-a)件.
由题意,得
|
解得:30≤a≤32.
设总利润为w,
∵总获利w=5a+7(40-a)=-2a+280是a的一次函数,且w随a的增大而减小,
∴当a=30时,w最大,最大值w=-2×30+280=220.
∴40-a=10.
∴当购进A种纪念品30件,B种纪念品10件时,总获利不低于216元,且获得利润最大,最大值是220元.
点评:本题考查了一次函数的应用,利用了总获利=A利润×A件数+B利润×B件数,件数×进价=付款,还用到了解二元一次方程组以及二元一次不等式组的知识.
练习册系列答案
相关题目
如图是一个几何体的三视图,则这个几何体的侧面积是( )

| A、12πcm2 |
| B、8πcm2 |
| C、6πcm2 |
| D、3πcm2 |