题目内容
2.已知:如图,为了了解我先某初中学生的身高情况,对该初中同年龄的若干名女生的身高进行了测量,整理数据后画出频数分布直方图.(1)参加这次测试的学生共有32人;
(2)身高在157.5-160.5范围内的学生人数最多,这一范围的学生占37.5%;
(3)若身高不低于155cm者为良好,则可估计该初中同年龄女学生身高的良好率是81.25%.
分析 (1)求得各组的人数的和即可;
(2)根据直方图即可确定人数最多的一组,然后根据百分比的意义求解;
(3)利用百分比的意义求解.
解答 解:(1)这次测试的总人数是:2+4+6+12+7+1=32(人),故答案是32;
(2)身高在157.5cm-160.6cm范围内的学生人数最多,所占的百分比是:$\frac{12}{32}$×100%=37.5%.
故答案是:157.5cm-160.6cm,37.5;
(3)该初中同年龄女学生身高的良好率是:$\frac{6+12+7+1}{32}$×100%=81.25%.
故答案是:81.25.
点评 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
练习册系列答案
相关题目
10.
问题:我们已经知道反比例函数的图象是双曲线,那么函数y=$\frac{6}{|x|-3}$的图象是怎样的呢?
经验:
(1)我们在研究反比例函数的图象和性质的时候是从以下两个方面来探究的:
①由数想到形----先根据表达式中x、y的数量关系,初步估计图象的基本概貌.如:形状(直线或曲线);位置(所在区域、与直线或坐标轴的交点情况);趋势(上升、下降);对称性等.
②描点画图----根据已有的函数画图的经验,利用描点画图.
(2)我们知道,函数y=$\frac{2}{x+1}$的图象是如图所示的两条曲线,一支在过点(-1,0)且平行于y轴的直线的右侧且在x轴的上方,另一支在过点(-1,0)且平行于y轴的直线的左侧且在x轴的下方.
探索:请你根据以上经验,研究函数y=$\frac{6}{|x|-3}$的图象和性质并解决相关问题.
(1)由数想形:
(2)描点画图:
①列表:
②画图:
应用:观察你所画的函数图象,解答下列问题:
(3)若点A(a,c),B(b,c)为该函数图象上不同的两点,则a+b=0;
(4)直接写出当$\frac{6}{|x|-3}$≥-2时x的取值范围.
经验:
(1)我们在研究反比例函数的图象和性质的时候是从以下两个方面来探究的:
①由数想到形----先根据表达式中x、y的数量关系,初步估计图象的基本概貌.如:形状(直线或曲线);位置(所在区域、与直线或坐标轴的交点情况);趋势(上升、下降);对称性等.
②描点画图----根据已有的函数画图的经验,利用描点画图.
(2)我们知道,函数y=$\frac{2}{x+1}$的图象是如图所示的两条曲线,一支在过点(-1,0)且平行于y轴的直线的右侧且在x轴的上方,另一支在过点(-1,0)且平行于y轴的直线的左侧且在x轴的下方.
探索:请你根据以上经验,研究函数y=$\frac{6}{|x|-3}$的图象和性质并解决相关问题.
(1)由数想形:
(2)描点画图:
①列表:
| x | … | … | |||||||||||||||
| y | … | … |
应用:观察你所画的函数图象,解答下列问题:
(3)若点A(a,c),B(b,c)为该函数图象上不同的两点,则a+b=0;
(4)直接写出当$\frac{6}{|x|-3}$≥-2时x的取值范围.