题目内容

将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是(  )

 

A.

502

B.

503

C.

504

D.

505

考点:

规律型:图形的变化类.

分析:

根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.

解答:

解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;

第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,

以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,

解得:n=503.

故选:B.

点评:

此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网