题目内容
(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )

分析:根据正方形的个数变化可设第n次得到2013个正方形,则4n+1=2013,求出即可.
解答:解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;
第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,
以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,
解得:n=503.
故选:B.
第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,
以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,
解得:n=503.
故选:B.
点评:此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.
练习册系列答案
相关题目