题目内容

17.如图,菱形ABCD中,对角线AC与BD交于点O,点E为AD中点,连接BE交AC于点F,则$\frac{AF}{OF}$的值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.2

分析 由四边形ABCD是菱形,于是得到AD=BC,AD∥BC,AO=CO,证得△AEF∽△CFB,得到$\frac{AF}{CF}=\frac{AE}{BC}$,证得$\frac{AF}{CF}=\frac{1}{2}$,推出$\frac{AF}{AC}=\frac{1}{3}$,得到$\frac{AF}{AO}=\frac{2}{3}$,即可得到结论.

解答 解:∵四边形ABCD是菱形,
∴AD=BC,AD∥BC,AO=CO,
∴△AEF∽△CFB,
∴$\frac{AF}{CF}=\frac{AE}{BC}$,
∵AE=$\frac{1}{2}$AD=$\frac{1}{2}$BC,
∴$\frac{AF}{CF}=\frac{1}{2}$,
∴$\frac{AF}{AC}=\frac{1}{3}$,
∴AC=3AF,
∵AC=2AO,
∴$\frac{AF}{AO}=\frac{2}{3}$,
∴OF=$\frac{1}{3}$AO,
∴$\frac{AF}{OF}$=2.
故选D.

点评 本题考查了相似三角形的判定和性质,菱形的性质,熟练掌握相似三角形的判定定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网