题目内容
19.| A. | 48° | B. | 42° | C. | 132° | D. | 138° |
分析 由平行线的性质得出∠3=∠1=48°,再由邻补角关系即可得出∠2的度数.
解答
解:如图所示:
∵AB∥CD,∠1=48°,
∴∠3=∠1=48°,
∴∠2=180°-∠3=132°.
故选:C.
点评 本题考查了平行线的性质、邻补角;熟练掌握平行线的性质,由平行线的性质得出同位角相等是解题的关键.
练习册系列答案
相关题目
9.要使分式$\frac{1}{3-x}$有意义,则( )
| A. | x≠3 | B. | x=3 | C. | x>3 | D. | x>-3 |
10.
我市政府积极组织社区居民为希望工程捐款,为了解阳光社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图.已知A、B两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题
(1)A组捐款户数是多少?本次调查的样本容量是多少?
(2)求出C组的频数并补全直方图;
(3)若该社区有500户住户,请估计捐款不少于300元的户数是多少?
(1)A组捐款户数是多少?本次调查的样本容量是多少?
(2)求出C组的频数并补全直方图;
(3)若该社区有500户住户,请估计捐款不少于300元的户数是多少?
| 组别 | 捐款额(x)元 |
| A | 10≤x<100 |
| B | 100≤x<200 |
| C | 200≤x<300 |
| D | 300≤x<400 |
| E | x≥400 |
7.计算(-2)2012+(-2)2013的结果是( )
| A. | 22013 | B. | -22012 | C. | -22013 | D. | -2 |
9.下列根式是最简二次根式的是( )
| A. | $\sqrt{0.5}$ | B. | $\sqrt{{a}^{2}+{b}^{2}}$ | C. | $\frac{1}{\sqrt{5}}$ | D. | $\sqrt{50}$ |