题目内容
【题目】如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).
(1)求该抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.
![]()
【答案】(1) y=﹣x2+2x+3;(2)见解析.
【解析】
(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;
(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.
解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),
∴
,得
,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,
理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),
∴抛物线的对称轴为直线x=1,
∴点A的坐标为(﹣1,0),
设点Q的坐标为(1,t),则
AC2=OC2+OA2=32+12=10,
AQ2=22+t2=4+t2,
CQ2=12+(3﹣t)2=t2﹣6t+10,
当AC为斜边时,
10=4+t2+t2﹣6t+10,
解得,t1=1或t2=2,
∴点Q的坐标为(1,1)或(1,2),
当AQ为斜边时,
4+t2=10+t2﹣6t+10,
解得,t=
,
∴点Q的坐标为(1,
),
当CQ时斜边时,
t2﹣6t+10=4+t2+10,
解得,t=
,
∴点Q的坐标为(1,﹣
),
由上可得,当点Q的坐标是(1,1)、(1,2)、(1,
)或(1,﹣
)时,使得以A、C、Q为顶点的三角形为直角三角形.