题目内容

请写出以
6
3
为根的一元二次方程
x2-(
6
+
3
)x+3
2
=0
x2-(
6
+
3
)x+3
2
=0
分析:依题意知方程的两根是
6
3
,因而方程是(x-
6
)(x-
3
)=0.
解答:解:∵一元二次方程的两根是
6
3

∴该方程是(x-
6
)(x-
3
)=0,即x2-(
6
+
3
)x+3
2
=0.
故答案是:x2-(
6
+
3
)x+3
2
=0.
点评:本题考查了一元二次方程的根与系数的关系.已知方程的两根写出方程的方法是需要熟记的.即a(x-x1)(x-x2)=0(a≠0).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网