题目内容
如图,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是_______.
如图所示,O为矩形ABCD的对角线交点,DF平分∠ADC交AC于E,BC于F, ∠BDF=15°,则∠COF=______.
如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=______ m时,矩形场地的面积最大,最大值为______.
如图,边长为的正三角形的内切圆半径是_________.
如图所示,AB=AC,F,E分别是AB,AC的中点.求证:△ABE≌△ACF.
若AD=BC,∠A=∠B,直接能利用“SAS”证明△ADF≌△BCE的条件是( )
A. AE=BF B. DF=CE C. AF=BE D. ∠CEB=∠DFA
如图所示,P,Q为△ABC边上的两个定点,在BC上求作一点R,使△PQR的周长最小.
如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE的度数为( )
A. 80° B. 70° C. 60° D. 50°
直线y=-x与直线y=x+2 与x 轴围成的三角形面积是________.