题目内容

如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为( )

A.50 B.50 C.50﹣50 D.50+50

D

【解析】

试题分析:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F点,截取NF=AF,连接MN交X,Y轴分别为P,Q点,此时四边形PABQ的周长最短,根据题目所给的条件可求出周长.

【解析】
过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F点,截取NF=AF,连接MN交x,y轴分别为P,Q点,

过M点作MK⊥x轴,过N点作NK⊥y轴,两线交于K点.

MK=40+10=50,

作BL⊥x轴交KN于L点,过A点作AS⊥BP交BP于S点.

∵LN=AS==40.

∴KN=60+40=100.

∴MN==50

∵MN=MQ+QP+PN=BQ+QP+AP=50

∴四边形PABQ的周长=50+50.

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网