题目内容

如图。在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且ODABOEAC

 (1)试判定△ODE的形状。并说明你的理由.

(2)线段BDDEEC三者有什么关系?写出你理由.

解:(1)△ODE是等边三角形,
其理由是:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,(2分)
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°(1分)
∴△ODE是等边三角形;(4分)

(2)答:BD=DE=EC,
其理由是:∵OB平分∠ABC,且∠ABC=60°,
∴∠ABO=∠OBC=30°,(6分)
∵OD∥AB,
∴∠BOD=∠ABO=30°,
∴∠DBO=∠DOB,
∴DB=DO,(7分)
同理,EC=EO,
∵DE=OD=OE,
∴BD=DE=EC.(1分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网