题目内容
化简求值
(1)先化简(1-
)÷
,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
(2)若a1=1-
,a2=1-
,a3=1-
,…;求a2011的值.(用含m的代数式表示)
(1)先化简(1-
| 1 |
| x-1 |
| x2-4x+4 |
| x2-1 |
(2)若a1=1-
| 1 |
| m |
| 1 |
| a1 |
| 1 |
| a2 |
分析:(1)先根据分式混合运算的法则把原式进行化简,再在x的取值范围内找出符合条件的x的值代入进行计算即可;
(2)先根据题意找出规律,由此规律即可得出结论.
(2)先根据题意找出规律,由此规律即可得出结论.
解答:解:(1)原式=
•
=
.
∵x满足-2≤x≤2且为整数,
∴若使分式有意义,x只能取0,-2.
当x=0时,原式=-
.(或:当x=-2时,原式=
).
(2)解:∵a1=1-
=
;
a2=1-
=1-
=1-
=
-
=-
;
a3=1-
=1-
=1+m-1=m;
a4=1-
=1-
=
-
=
;
a5=1-
=1-
=1-
=
-
=-
;
…
∴3个一循环,
又∵2011÷3=670…1,
∴a2011与a1的值相同.
∴a2011=1-
=
.
| x-2 |
| x-1 |
| (x+1)(x-1) |
| (x-2)2 |
=
| x+1 |
| x-2 |
∵x满足-2≤x≤2且为整数,
∴若使分式有意义,x只能取0,-2.
当x=0时,原式=-
| 1 |
| 2 |
| 1 |
| 4 |
(2)解:∵a1=1-
| 1 |
| m |
| m-1 |
| m |
a2=1-
| 1 |
| a1 |
| 1 | ||
|
| m |
| m-1 |
| m-1 |
| m-1 |
| m |
| m-1 |
| 1 |
| m-1 |
a3=1-
| 1 |
| a2 |
| 1 | ||
-
|
a4=1-
| 1 |
| a3 |
| 1 |
| m |
| m |
| m |
| 1 |
| m |
| m-1 |
| m |
a5=1-
| 1 |
| a4 |
| 1 | ||
|
| m |
| m-1 |
| m-1 |
| m-1 |
| m |
| m-1 |
| 1 |
| m-1 |
…
∴3个一循环,
又∵2011÷3=670…1,
∴a2011与a1的值相同.
∴a2011=1-
| 1 |
| m |
| m-1 |
| m |
点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
练习册系列答案
相关题目