题目内容
一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为( )
| A、 |
| B、 |
| C、 |
| D、 |
考点:二次函数的图象,一次函数的图象
专题:数形结合
分析:对于每个选项,先根据二次函数的图象确定a和b的符号,然后根据一次函数的性质看一次函数图象的位置是否正确,若正确,说明它们可在同一坐标系内存在.
解答:解:A、由二次函数y=ax2+bx的图象得a>0,b<0,则一次函数y=ax+b经过第一、三、四象限,且它们的交点为(1,0),所以A选项正确;
B、由二次函数y=ax2+bx的图象得a>0,b>0,则一次函数y=ax+b经过第一、二、三象限,所以B选项错误;
C、由二次函数y=ax2+bx的图象得a<0,b>0,则一次函数y=ax+b经过第一、二、四象限,所以C选项错误;
D、由二次函数y=ax2+bx的图象得a<0,b<0,则一次函数y=ax+b经过第二、三、四象限,所以D选项错误.
故选A.
B、由二次函数y=ax2+bx的图象得a>0,b>0,则一次函数y=ax+b经过第一、二、三象限,所以B选项错误;
C、由二次函数y=ax2+bx的图象得a<0,b>0,则一次函数y=ax+b经过第一、二、四象限,所以C选项错误;
D、由二次函数y=ax2+bx的图象得a<0,b<0,则一次函数y=ax+b经过第二、三、四象限,所以D选项错误.
故选A.
点评:本题考查了二次函数的图象:二次函数的图象为抛物线,可能利用列表、描点、连线画二次函数的图象.也考查了二次函数图象与系数的关系.
练习册系列答案
相关题目
一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,-4),则这个二次函数的解析式为( )
| A、y=-2(x+2)2+4 |
| B、y=-2(x-2)2+4 |
| C、y=2(x+2)2-4 |
| D、y=2(x-2)2-4 |