ÌâÄ¿ÄÚÈÝ
18£®£¨1£©ÇólµÄ½âÎöʽ¼°Æä¶Ô³ÆÖáºÍ¶¥µã×ø±ê£»
£¨2£©ÅжϵãBÊÇ·ñÔÚlÉÏ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÈôÏß¶ÎABÒÔÿÃë2¸öµ¥Î»³¤µÄËÙ¶ÈÏòÏÂÆ½ÒÆ£¬ÉèÆ½ÒÆµÄʱ¼äΪt£¨Ã룩£®
¢ÙÈôlÓëÏß¶ÎAB×ÜÓй«¹²µã£¬Ö±½Óд³ötµÄȡֵ·¶Î§£»
¢ÚÈôlͬʱÒÔÿÃë3¸öµ¥Î»³¤µÄËÙ¶ÈÏòÏÂÆ½ÒÆ£¬lÔÚyÖá¼°ÆäÓÒ²àµÄͼÏóÓëÖ±ÏßAB×ÜÓÐÁ½¸ö¹«¹²µã£¬ÇótµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©Ö±½ÓÀûÓôý¶¨ÏµÊý·¨Çó³ö¶þ´Îº¯Êý¼´¿É£»
£¨2£©Ê×ÏȵóöBµã×ø±ê£¬ÔÙ´úÈë¶þ´Îº¯Êý½âÎöʽ½ø¶øµÃ³ö´ð°¸£»
£¨3£©¢Ù·Ö±ðµÃ³öµ±Å×ÎïÏßl¾¹ýµãBʱ£¬µ±Å×ÎïÏßl¾¹ýµãAʱ£¬Çó³öyµÄÖµ£¬½ø¶øµÃ³ötµÄȡֵ·¶Î§£»
¢Ú¸ù¾ÝÌâÒâµÃ³ö¹ØÓÚtµÄ²»µÈʽ½ø¶ø×é³É·½³Ì×éÇó³ö´ð°¸£®
½â´ð ½â£º£¨1£©°ÑµãC£¨0£¬3£©ºÍD£¨3£¬0£©µÄ×ø±ê´úÈëy=-x2+mx+nÖУ¬
µÃ$\left\{\begin{array}{l}n=3\\-{3^2}+3m+n=0\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}n=3\\ m=2\end{array}\right.$£¬
¡àÅ×ÎïÏßl½âÎöʽΪy=-x2+2x+3£¬
¶Ô³ÆÖáΪx=1£¬¶¥µã×ø±êΪ£¨1£¬4£©£®
£¨2£©²»ÔÚ£»
¡ßA£¨-4£¬-1£©£¬Ïß¶ÎABÓëxÖáÆ½ÐУ¬AB=2£¬
¡àB£¨-2£¬-1£©£¬
°Ñx=-2´úÈëy=-x2+2x+3£¬µÃy=-5¡Ù-1£¬
¡àµãB²»ÔÚÅ×ÎïÏßlÉÏ£®
£¨3£©¢Ù2¡Üt¡Ü10£® ![]()
ÉèµãBµÄ×ø±êΪ£¨-2£¬-1-2t£©£¬µãAµÄ×ø±êΪ£¨-4£¬-1-2t£©£¬
µ±Å×ÎïÏßl¾¹ýµãBʱ£¬ÓÐy=-£¨-2£©2+2¡Á£¨-2£©+3=-5£¬
µ±Å×ÎïÏßl¾¹ýµãAʱ£¬ÓÐy=-£¨-4£©2+2¡Á£¨-4£©+3=-21£¬
µ±Å×ÎïÏßlÓëÏß¶ÎAB×ÜÓй«¹²µãʱ£¬ÓÐ-21¡Ü-1-2t¡Ü-5£¬
½âµÃ£º2¡Üt¡Ü10£®
¢ÚÆ½ÒÆ¹ý³ÌÖУ¬ÉèµãCµÄ×ø±êΪ£¨0£¬3-3t£©£¬Å×ÎïÏßlµÄ¶¥µã×ø±êΪ£¨1£¬4-3t£©£¬
Èç¹ûÖ±ÏßABÓëÅ×ÎïÏßlÔÚyÖá¼°ÆäÓÒ²àµÄͼÏó×ÜÓÐÁ½¸ö¹«¹²µã£¬
ÔòÓÐ $\left\{\begin{array}{l}-1-2t¡Ý3-3t\\-1-2t£¼4-3t\end{array}\right.$£¬
½âµÃ£º4¡Üt£¼5£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÒÔ¼°²»µÈʽ×éµÄ½â·¨µÈ֪ʶ£¬ÕýÈ·ÀûÓÃÊýÐνáºÏ·ÖÎöµÃ³ö¹ØÓÚtµÄ²»µÈʽÊǽâÌâ¹Ø¼ü£®
| A£® | m=4£¬n=3 | B£® | m=4£¬n=4 | C£® | m=3£¬n=4 | D£® | m=3£¬n=3 |
| ÈËÊý | 3 | 4 | 2 | 1 |
| ·ÖÊý | 80 | 85 | 90 | 95 |
| A£® | 85ºÍ85 | B£® | 85ºÍ80 | C£® | 95ºÍ85 | D£® | 85ºÍ87.5 |