题目内容
解答问题:
(1)
+
+
+…+
;
(2)模仿上面的解法,计算
+
+
+…+
.
(1)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)(2n+1) |
(2)模仿上面的解法,计算
| 1 |
| 2×6 |
| 1 |
| 6×10 |
| 1 |
| 10×14 |
| 1 |
| 38×42 |
考点:有理数的混合运算
专题:
分析:(1)由
=
×(1-
),
=
×(
-
),…,
=
×(
-
)代入计算即可;
(2)类比(1)的方法得出
=
×(
-
),
=
×(
-
),…,
=
×(
-
),代入计算即可.
| 1 |
| 1×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
(2)类比(1)的方法得出
| 1 |
| 2×6 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 6×10 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 10 |
| 1 |
| 38×42 |
| 1 |
| 4 |
| 1 |
| 38 |
| 1 |
| 42 |
解答:解:(1)原式═
×(1-
)+
×(
-
)+
×(
-
)+…+
×(
-
)
=
×(1-
+
-
+
-
+…+
-
)
=
×(1-
)
=
×
=
;
(2)原式=
×(
-
)+
×(
-
)+
×(
-
)+…+
×(
-
)
=
×(
-
+
-
+
-
+…+
-
)
=
×(
-
)
=
×
=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 2n |
| 2n+1 |
=
| n |
| 2n+1 |
(2)原式=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 10 |
| 1 |
| 4 |
| 1 |
| 10 |
| 1 |
| 14 |
| 1 |
| 4 |
| 1 |
| 38 |
| 1 |
| 42 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 10 |
| 1 |
| 10 |
| 1 |
| 14 |
| 1 |
| 38 |
| 1 |
| 42 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 42 |
=
| 1 |
| 4 |
| 10 |
| 21 |
=
| 5 |
| 42 |
点评:此题考查有理数的混合运算,注意分数的特点,合理拆分解决问题.
练习册系列答案
相关题目