题目内容
【题目】已知,如图,在△ADC中,∠ADC=90°,以DC为直径作半圆⊙O,交边AC于点F,点B在CD的延长线上,连接BF,交AD于点E,∠BED=2∠C.
(1)求证:BF是⊙O的切线;
(2)若BF=FC,
,求⊙O的半径.
![]()
【答案】(1)见解析;(2)⊙O的半径是3.
【解析】
(1)欲证BF是圆O的切线,只需证明OF⊥BF;
(2)根据角与角间的数量关系推知△AEF的等边三角形.所以易求AD=2
.则通过解直角△ADC来求直径CD的长度.
(1)证明:连接OF.
∵∠OFB=180°﹣∠B﹣∠BOF=180°﹣∠B﹣2∠C=180°﹣∠B﹣∠BED=90°,
∴OF⊥BF,
∴BF是⊙O的切线;
(2)解:∵BF=FC,
∴∠B=∠FCB,
∵∠BED=2∠C,
∴∠BDE+∠B=3∠C=90°,
∴∠B=∠C=30°,
∴∠AFE=60°,∠BED=60°,
∴△AEF是等边三角形,
则EF=AE=
.
∴AD=2
.
又∵∠C=30°,
∴CD=6,
∴⊙O的半径是3.
![]()
练习册系列答案
相关题目