题目内容
若函数y=(k-1)x+k2-1是正比例函数,则k的值是( )
| A、-1 | B、1 |
| C、-1或1 | D、任意实数 |
考点:正比例函数的定义
专题:
分析:根据正比例函数的定义可得k2-1=0,且k-1≠0,再解即可.
解答:解:由题意得:k2-1=0,
解得:k=±1,
∵k-1≠0,
∴k≠1,
∴k=-1,
故选:A.
解得:k=±1,
∵k-1≠0,
∴k≠1,
∴k=-1,
故选:A.
点评:此题主要考查了正比例函数的定义,关键是掌握形如y=kx(k是常数,k≠0)的函数叫做正比例函数.
练习册系列答案
相关题目
绝对值小于4的整数有( )
| A、8个 | B、7个 | C、6个 | D、5个 |
下列各式中,完全平方公式应用正确的是( )
| A、(2a+3b)2=2a2+12ab+3b2 |
| B、(-x+y)2=-x2+2xy+y2 |
| C、(3a-4b)2=9a2-12ab+16b2 |
| D、(mn-4)2=m2n2-8mn+16 |
若正数a的算术平方根比它本身大,则( )
| A、0<a<1 | B、a>0 |
| C、a<1 | D、a>1 |
| A、44° | B、54° |
| C、64° | D、74° |