题目内容

5.将三个三角形(△ABC、△ACD、△ADE)拼接在一起恰巧组成∠BAE=90°,AB=AE,已知BC=3,DE=2,∠B=∠E=90°,∠CAD=45°,则CD长为5.

分析 延长CB至F,使BF=ED,连接AF,先由SAS证明△ABF≌△AED,得出AF=AD,∠BAF=∠EAD,再证出∠CAD=∠CAF,证明△ACD≌△ACF,得出CD=CF即可.

解答 解:延长CB至F,使BF=ED,连接AF,如图所示:
则CF=2+3=5,
∵∠ABC=90°,
∴∠ABF=90°,
在△ABF和△AED中,
$\left\{\begin{array}{l}{BF=ED}&{\;}\\{∠ABF=∠E=90°}&{\;}\\{AB=AE}&{\;}\end{array}\right.$,
∴△ABF≌△AED中(SAS),
∴AF=AD,∠BAF=∠EAD,
∵∠BAE=90°,∠CAD=45°,
∴∠BAC+∠EAD=45°,
∴∠BAC+∠BAF=45°,
即∠CAF=45°,
∴∠CAD=∠CAF,
在△ACD和△ACF中,
$\left\{\begin{array}{l}{AF=AD}&{\;}\\{∠CAD=∠CAF}&{\;}\\{AC=AC}&{\;}\end{array}\right.$,
∴△ACD≌△ACF(SAS),
∴CD=CF=5.
故答案为:5.

点评 本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,通过作辅助线证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网