题目内容
观察下列等式
=1-
,
=
-
,
=
-
,将以上三个等式两边分别相加得:
+
+
=1-
+
-
+
-
=1-
=
.
(1)猜想并写出:
=
-
-
(2)直接写出下列各式的计算结果:
①
+
+
+…+
=
②
+
+
+…+
=
(3)探究并计算:
+
+
+…+
.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)猜想并写出:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
(2)直接写出下列各式的计算结果:
①
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2011×2012 |
| 2011 |
| 2012 |
| 2011 |
| 2012 |
②
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n×(n+1) |
| n |
| n+1 |
| n |
| n+1 |
(3)探究并计算:
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2010×2012 |
分析:观察得到分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,即
=
-
;然后根据此规律把各分数转化,再进行分数的加减运算.对于(3)先提
出来,然后和前面的运算方法一样.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
解答:解:(1)
-
;(2)①
;②
;
(3)原式=
(
+
+…+
)
=
×
=
.
| 1 |
| n |
| 1 |
| n+1 |
| 2011 |
| 2012 |
| n |
| n+1 |
(3)原式=
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 1005×1006 |
=
| 1 |
| 4 |
| 1005 |
| 1006 |
=
| 1005 |
| 4024 |
点评:本题考查了关于数字变化的规律:通过观察数字之间的变化规律,得到一般性的结论,再利用此结论解决问题.
练习册系列答案
相关题目