题目内容
已知:如图,E、F分别为?ABCD中AD、BC的中点,分别连接AF、BE交于G,连接CE、DF交于点H.求证:EF与GH互相平分.
画右边几何体的三种视图(注意符合三视图原则)
定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.
性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理【解析】如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.
探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.
调查乘坐飞机的旅客是否携带了危禁物品, 这种调查适用____________.(填“普查”或者“抽样调查”)
要反映无锡市一周内每天的最高气温的变化情况,宜采用 ( )
A. 折线统计图 B. 扇形统计图 C. 条形统计图 D. 频数分布直方图
将2017个边长为2的正方形,按照如图所示方式摆放,O1 , O2 , O3 , O4 , O5 , …是正方形对角线的交点,那么阴影部分面积之和等于________.
如图,D、E、F分别为Rt△ABC中AB、AC、BC的中点,AB=2, 则DC和EF的大小关系是( )
A. DC>EF B. DC<EF C. DC=EF D. 无法比较
关于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0
(Ⅰ)当m=时,求方程的实数根;
(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围;
“a是实数,|a|≥0”这一事件是( )
A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件