题目内容

如图,已知抛物线y=x2-1的顶点坐标为M,与x轴交于A、B两点.
(1)判断△MAB的形状,并说明理由;
(2)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC、MD,试判断MC、MD是否垂直,并说明理由.
考点:二次函数综合题
专题:
分析:(1)由抛物线的解析式可知OA=OB=OM=1,得出∠AMO=∠MAO=∠BMO=∠MBO=45°从而得出△MAB是等腰直角三角形.
(2)分别过C点,D点作y轴的平行线,交x轴于E、F,过M点作x轴的平行线交EC于G,交DF于H,设D(m,m2-1),C(n,n2-1),通过EG∥DH,得出
EC
DF
=
OE
OF
,从而求得m、n的关系,根据m、n的关系,得出△CGM∽△MHD,利用对应角相等得出∠CMG+∠DMH=90°,即可求得结论.
解答:解:(1)△MAB是等腰直角三角形.理由如下:
由抛物线的解析式为:y=x2-1可知A(-1,0),B(1,0),
∴OA=OB=OM=1,
∴∠AMO=∠MAO=∠BMO=∠MBO=45°,
∴∠AMB=∠AMO+∠BMO=90°,AM=BM,
∴△MAB是等腰直角三角形.

(2)MC⊥MD.理由如下:
分别过C点,D点作y轴的平行线,交x轴于E、F,过M点作x轴的平行线交EC于G,交DF于H,
设D(m,m2-1),C(n,n2-1),
∴OE=-n,CE=1-n2,OF=m,DF=m2-1,
∵OM=1,
∴CG=n2,DH=m2
∵EG∥DH,
EC
DF
=
OE
OF

1-n2
m2-1
=
-n
m

解得m=-
1
n

CG
GM
=
n2
-n
=-n,
MH
DH
=
m
m2
=
1
m
=-n,
CG
GM
=
MH
DH

∵∠CGM=∠MHD=90°,
∴△CGM∽△MHD,
∴∠CMG=∠MDH,
∵∠MDH+∠DMH=90°
∴∠CMG+∠DMH=90°,
∴∠CMD=90°,
即MC⊥MD.
点评:本题考查了待定系数法求解析式,等腰三角形的判定,三角形相似的判定和性质,作出辅助线是本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网