题目内容


如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.


              证明:∵AD∥BC,

∴∠A=∠C,

∵AE=CF,

∴AE+EF=CF+EF,

即AF=CE,

∵在△ADF和△CBE中

∴△ADF≌△CBE(AAS),

∴AD=BC.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网