题目内容

(10分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月份结算,m3表示立方米):

请根据上表的内容解答下列问题:

(1)填空:若该户居民2月份用水4m3,则应收水费_____元;

(2)若该户居民3月份用水am3(其中6m3<a<10m3),则应收水费多少元?(用含a的代数式表示,并化简)

(3)若该户居民4,5两个月共用水15m3,并且4月份用水量不超过6 m3,设4月份用水xm3,求该户居民4,5两个月共交水费多少元?(用含x的代数式表示,并化简)

(1)8元 ;(2)4a-12;(3)48-2x或68-6x 【解析】试题分析:对于(1),不超过6m3,单价为2元,水费=单价×数量,据此解答; 对于(2),由题意得水费=单价为2元的6m3的水费+单价为4元的超过6m3的水费; 对于(3)应分情况讨论:4月份不超过6m3,5月份10立方米以上;或4月份不超过6m3,5月份在6-10立方米之间. 【解析】 (1)2×4=...
练习册系列答案
相关题目

如图,把一张长方形纸片ABCD按图中的方式折叠,使点A与点E重合,点C与点F重合(E,F两点均在BD上),折痕分别为BH,DG.试说明:△BHE≌△DGF.

见解析 【解析】试题分析:先根据矩形的性质得出∠ABD=∠BDC,再由图形折叠的性质得出∠ABH=∠EBH,∠FDG=∠CDG,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH≌△DFG. 试题解析:∵四边形ABCD是长方形, ∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC, ∵△BEH是△BAH翻折而成, ∴∠ABH=∠EBH,∠A=∠HEB...

如图,关于虚线成轴对称的有(  )个.

A. 1 B. 2 C. 3 D. 4

B 【解析】①关于虚线不成轴对称,②关于虚线不成轴对称,③关于虚线不成轴对称,④关于虚线成轴对称, 故选B.

如果为四次三项式,则___________.

-1 【解析】由题意得 且m-3≠0, 解之得 m=-1.

计算:(每小题5分,共10分)

(1)5-2+(-4.8)+(-4) (2)--3××(-1)÷(-1

(1)-6;(2)-22 【解析】试题分析:(1)利用加法的交换律和结合律计算,把一、三项结合,二、四项结合;(2)按照先算乘方,再算乘除,后算加减,有括号的先算括号里的顺序计算. 【解析】 (1)5-2+(-4.8)+(-4) =5+(-4)+(-4)+(-2) =1-7 =-6; (2)--3××(-1)÷(-1) =-16-3×4×(-) ×(-)...

如图,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?

解:a与c平行.

理由:因为∠1=∠2(  ), 

所以a∥b (           ). 

因为∠3+∠4=180°(    ), 

所以b∥c (         ). 

所以a∥c (               ).

已知;内错角相等,两直线平行;已知;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行 【解析】试题分析:根据平行线的性质得出a∥b,b∥c,即可推出答案. 试题解析:a∥c, 理由是:∵∠1=∠2(已知), ∴a∥b(内错角相等,两直线平行), ∵∠3+∠4=180°(已知), ∴b∥c(同旁内角互补,两直线平行), ∴a...

如图,在△ABC中,∠BAC=4∠ABC=4∠C,BD⊥AC交CA的延长线于点D,求∠ABD的度数.

30°. 【解析】试题分析:利用三角形的内角和为180°即可得到∠ABC或∠C的度数,进而利用外角可求得∠DAB的度数,从而求得∠ABD的度数. 试题解析:∵∠BAC=4∠ABC=4∠C, ∴∠BAC+∠ABC+∠C=180°, 即∠C=∠ABC=180×=30°, ∴∠DAB=∠C+∠ABC=30°+30°=60°, ∵BD⊥AC, ∴∠BDA=90°,...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网