题目内容
如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于( )
A. 4 B. 6 C. 8 D. 12
在直角坐标系中,点O为坐标原点,A(1,1),B(1,3),将线段AB平移到直线AB的右边得到线段CD(点C与点A对应,点D与点B对应),点D的坐标为(m,n),且m>1.
(1)如图1,当点C坐标为(2,0)时,请直接写出三角形BCD的面积: ;
(2)如图2,点E是线段CD延长线上的点,∠BDE的平分线DF交射线AB于点F.求证;
(3)如图3,线段CD运动的过程中,在(2)的条件下,n=4.
①当时,在直线AB上点P,满足三角形PBC的面积等于三角形CDF的面积,请直接写出点P的坐标: ;
②在x轴上的点Q,满足三角形QBC的面积等于三角形CDF的面积的2倍,请直接写出点Q的坐标: .(用含m的式子表示).
如图,两个全等的长方形ABCD与CDEF,旋转长方形ABCD能和长方形CDEF重合,则可以作为旋转中心的点有( )
A. 1个 B. 2个 C. 3个 D. 无数个
如图,在?ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的长.
如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.如图1,当n=1时,正三角形的边长a1=_____;如图2,当n=2时,正三角形的边长a2=_____;如图3,正三角形的边长an=_____(用含n的代数式表示).
下列说法正确的是( )
A. x=4是不等式2x>-8的一个解 B. x=-4是不等式2x>-8的解集
C. 不等式2x>-8的解集是x>4 D. 2x>-8的解集是x<-4
综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
若一组数据x1,x2,x3,x4,x5,x6的平均数是2,方差是2,则另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2,3x6﹣2的平均数和方差分别是( )
A. 2,2 B. 2,18 C. 4,6 D. 4,18
已知一次函数的图象经过A(-2,-3),B(1,3)两点.
⑴ 求这个一次函数的解析式;
⑵ 试判断点P(-1,1)是否在这个一次函数的图象上
⑶ 求此函数与x轴、y轴围成的三角形的面积.