题目内容
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.
![]()
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.
(1)A(1,4);y=﹣x2+2x+3;(2)当t=2时,S△ACG的最大值为1;(3)t=20﹣8 或t= . 【解析】试题分析:(1)根据矩形的性质可以写出点A得到坐标;由顶点A的坐标可设该抛物线的顶点式方程为y=a(x-1)2+4,然后将点C的坐标代入,即可求得系数a的值(利用待定系数法求抛物线的解析式);(2)利用待定系数法求得直线AC的方程y=-2x+6;由图形与坐标变换可以求得...
练习册系列答案
相关题目