题目内容

如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为 ______ .

【解析】试题分析:连接OD,则OD⊥BD,过E作EH⊥BC于H,则四边形EODH是正方形,可得EH=5,BH=7,易求tan∠BEH==,再由∠ABC+∠BEH=90°,∠ABC+∠ACB=90°,证明∠ACB=∠BEH即可得到tan∠ACB=. 故答案为: .
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网